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ABSTRACT
Introduction. 5-hydroxytryptamin (serotonin) represents a monoamine with different functions. Central neu-
rotransmitter is related to mood, food and energy regulation and indirect positive effects on bone mass via 
leptin and sympathetic system. Gut-derived 5-hydroxytryptamine directly influences the skeleton through 
Wnt/Lrp5/beta catenin signalling with opposite actions to the central pool. 
Method. This is a mini-review regarding serotonin- related bone changes. 
Results and discussions. All the bone cells have receptors for 5-hydroxytryptamine while skeleton may 
have an intrinsic ability to locally generate it. The monoamine displays paracrine and autocrine actions, some 
incompletely described. One practical point is the potential bone loss in clinical situations with serotonin ex-
cess, as seen in carcinoid syndrome. Up to this moment, non-bone metastatic neuroendocrine tumours are 
not listed as a cause of secondary osteoporosis. Another practical aspect is the use of circulating 5-hydroxy-
tryptamine as bone turnover marker surrogate for assessing the future fragility fracture probability. Despite 
some correlations with classical bone remodelling markers, no clear cut conclusion has been established yet. 
Conclusion. 5-hydroxytryptamine displays complex effects on skeleton status, whether direct, indirect or 
local, but there are data still unknown, thus future need to connect the dots in this particular inter-disciplinary 
field. 
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INTRODUCTION

5-hydroxytryptamin or serotonin represents a 
complex monoamine which is produced in brain 
and gut, mainly with different functions (1-3). Cen-
tral production is related to neurotransmitters ac-
tivities as mood, food and energy regulation (4-6). 
Brain serotonin is also linked to positive effects on 
bone mass (7-9). The other source of 5-hydroxy-
tryptamine is gut-derived and it directly influences 
the skeleton having opposite skeleton actions to the 
central pool (10-12). That is why the circulating 
5-hydroxytryptamine assays might not completely 
reflect what happens to the bone from the serotonin 
point of view (13,14).

MATERIAL AND METHOD

This is a mini-review regarding serotonin- re-
lated bone changes. Most of the cited papers are 

accessed via Pub Med database of English written 
articles. 44 out of 50 references are from 2012 to 
2016, considering the novelty of the topic. 

RESULTS 

Central 5-hydroxytryptamine
Mouse models and later human research inden-

tified a remodelling pathway control coming from 
central mainstream and involving 5-hydroxytrypta-
mine (15-17). The link between brain and periph-
ery is established not by central serotonin, that does 
not have the ability to cross the blood-brain barrier, 
but through leptin and sympathetic system (15-17). 
Brain serotonin, as neurotransmitter, communi-
cates with others molecules involved in food intake 
and energy expenditure, like fat-derived adipo-
kines. Thus, a loop of regulation between metabolic 
components as obesity and type 2 diabetes also in-
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cludes skeleton setup (18). A key player in this 
complex loop is leptin, which induces the prolifera-
tion of osteoblasts and their differentiation, block-
ing the cells apoptosis but controversies still exist 
(19). Leptin also modules the central sympathetic 
inputs to peripheral bone (19-21). The bone cortex 
is innervated by nerve fibers (regardless myelinat-
ed or not), while other innervations come from ar-
terial and venous small vessels of the skeleton (20). 
These fibers provide the neural control of the bone 
(20). The most described system is sympathetic, 
while opposite parasympathetic bone influence is 
less described (21). A secondary frame of leptin in-
tervention is related to osteocalcin (22,23). Osteo-
calcin represents a molecule produced by the bone, 
serving an endocrine function of insulin sensitivity 
by inhibiting insulin producing pancreas cells and 
it also is a well known bone formation marker 
(22,23). Osteocalcin and leptin inhibits each other 
based on a dual synergism (22,23). Another ele-
ment of interplay between food and energy path-
ways and skeleton regulation includes amylin with 
endocrine consequences over normal feeding pro-
cess, while in vitro expresses anabolic bone actions 
(22-24). Murine experiments in ovarectomized rats 
revealed that 5-hydroxytryptamine is related to 
pain protection mechanisms which may be en-
hanced by administration of anti-osteoporotic drugs 
as calcitonin (through type 1 receptors of serotonin 
5-HTR1 located in thalamus) (25). The negative 
skeleton influence caused by central 5-hydroxy-
tryptamine is tidily related to observations from 
large clinical studies on Selective Serotonine Reup-
take Inhibitors (SSRI), which are drugs useful in 
depression interfering with a larger time frame of 
monoamine exposure (26-28). These aspects are 
confirmed in rats models, while in humans treated 
with SSRI the risk of osteoporotic fracture risk is 
displayed at any age, regardless females meno-
pausal status (29-31). Young women with anorexia 
nervosa which involves a highly consumptive sta-

tus associate low bone mineral density, as well as 
circulating serotonin and leptin while the balance 
between bone turnover markers is changed by in-
creased bone resorption marker CTX and decreased 
bone formation marker osteocalcin (32).

Peripheral 5-hydroxytryptamine
Gut-produced 5-hydroxytryptamine is produced 

by tryptophan hydroxylase type 1 from tryptophan, 
the enzyme being located on enterochromaffin cells 
(33). Serotonin and its 24-hours urinary derivate 
5-hydroxy-indol-acetic acid serves as classical 
neuroendocrine markers in different types of neu-
roendocrine tumors regardless entero-pancreatic or 
lung origin (34-36). Locally, serotonin is used for 
digestion and microbiome activity (37-39). From 
gut, 5-hydroxytryptamine goes into the platelets 
and then to different organs, but not into the brain 
(40). Intestinal 5-hydroxytryptamine uses the Wnt/
Lrp/beta catenin pathways to regulate skeleton 
health especially processes related to bone loss, op-
posite to central non-circulating serotonin which 
actually does not get directly at skeleton site (41).
All the bone cells have receptors for serotonin (42-
44). Some studies indicate the intrinsic ability of 
skeleton to product local 5-hydroxytryptamine 
(43,44). However the source, the monoamine dis-
plays local mechanisms at paracrine and autocrine 
level, which are still incompletely known up to 
these days (43,44). Overall, the bone regulation is 
done by both circulating and central 5-hydroxy-
tryptamine but, even they share the same biochem-
istry, they have antagonist effects (45).

DISCUSSIONS

One practical point directly linked to intestinal 
serotonin bone actions is the topic of potential bone 
mineral density damage in clinical situations with 
5-hydroxytryptamine excess, as found in carcinoid 
tumors (46). Controversies in this topic exist and 
some studies pointed no correlation between circu-
lating level and skeleton anomalies in non-bone 
metastatic neuroendocrine conditions (47). Others 
found a lower bone mineral density at hip level in 
patients with neuroendocrine neoplasia, even it is 
difficult to predict the associated fracture risk based 
on serotonin metabolites (48). Up to this moment, 
carcinoid syndrome – associated masses are not 
considered a cause of secondary osteoporosis (46-
48). Another practical aspect is the use of circulat-
ing 5-hydroxytryptamine as bone turnover marker 
surrogate for assessing the future fragility fracture FIGURE 1. Skeletal effects of the 5-hydroxytryptamine 

(serotonin) 

Paracrine?
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probability (49,50). Despite some correlations with 
classical bone remodelling markers, no clear cut 
conclusion has been established yet (50).

CONCLUSION

5-hydroxytryptamine displays complex effects 
on skeleton status, whether direct, indirect or local, 

but there are still various controversial or unknown 
data, thus the future need to connect the dots in this 
particular inter-disciplinary field. 
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