COVID-19 pandemic and thyroid cancer

Mihai Cristian Dumitrascu1,2, Eugenia Petrova2,3, Diana Elena Rentea2, Stefania Zugravu2, Adina Ghemigian2,3, Mara Carsote2,3, Anda Dumitrascu3, Claudia Mehedintu2,4, Florica Sandru2,5

1 University Emergency Hospital, Bucharest, Romania
2 “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
3 “C.I. Parhon” National Institute of Endocrinology, Bucharest, Romania
4 “Nicolae Malaxa” Clinical Hospital, Bucharest, Romania
5 Elias Emergency Hospital, Bucharest, Romania

ABSTRACT

Thyroid domain amid COVID-19 era has been involved in many ways, either in terms of patients with prior thyroid conditions who become COVID-19 positives, or coronavirus-induced de novo thyroid anomalies. This article represents a literature update on thyroid cancer (TC). The PubMed-based research includes a publication timeline regarding the first two years of pandemic (2020-2021). The general scientific interest on TC according to online research decreased during the first half of 2020 and got to the pre-pandemic level by the end of 2020. At the beginning of the pandemic, there was a delay in approaching the thyroid conditions, while telemedicine became a most useful tool, as seen in others areas of medicine. Post - 2020 lockdown medical presentation was associated with a more aggressive behavior of TC when compared to pre-pandemic data. Ongoing debates surround the topic of higher risk of COVID-19 infection in patients with a prior diagnostic of a thyroid malignancy in terms of having a higher risk of contracting the infection or an increased risk of developing a more severe form. There is not clear answer up to this point. Recent assets concerning TC field (non-COVIDID-19 data) that are released for the last two years concern the understanding of thyroid cancer genetics, the approach of shift from differentiated to anaplastic carcinoma, as well as evidence regarding new players in the oncological endocrinology like tyrosine kinase inhibitors for advanced forms of radioiodine refractory TC. For what we know so far, by the end of the second pandemic year, the patients with TC do not represent a fragile population when facing COVID-19 infection itself. However, the delay of adequate therapy amid restrictions is reflected in more severe malignancy behavior, while general concerns about the virus and pandemics increase the level of psychological and social stress. Case finding strategies to detect high risk patients as those on tyrosine kinase inhibitors with potential lung complications are needed.

Keywords: thyroid, cancer, neoplasia, tumor, differentiated thyroid cancer, ultrasound, pandemic, COVID-19

INTRODUCTION

Thyroid domain amid COVID-19 era has been involved by the presence of euthyroid sick syndrome in severe infections, a new type of subacute thyroiditis which is virus-triggered, by the risk of developing central hypothyroidism due to coronavirus-associated hypophysitis, by the risk of agranulocytosis in subjects under anti-thyroid drugs while vaccination against COVID-19 might trigger autoimmune response involving anti-thyroid antibodies or even subacute thyroiditis etc (1-10) (Figure 1).

METHOD

We aim to overview a pandemic update on thyroid cancer. This article represents a literature update. This a narrative general presentation. All papers are published on PubMed indexed journals. The publication timeline regarding thyroid cancer update concerns the first two years of COVID-19 pandemic (2020-2021) but pre-pandemic data are also included to highlight a specific topic. We only included full-length, English language published articles. The key words of research are (in different
combinations): “thyroid cancer” and “COVID-19” or “pandemic” or “coronavirus”. We will also introduce a brief discussion on a particular sub-section on endocrinology: thyroid cancer in acromegalic patients, referring to the most clinically reveling papers published within the last 2 years.

PANDEMICS AND GENERAL CONCERN ADDRESSING THYROID CANCER

The general scientific interest on thyroid cancer according to online research decreased during the first half of 2020 and got to the pre-pandemic level by the end of 2020 (11). At the beginning of the pandemic, there was a delay in approaching the thyroid conditions, while telemedicine became a most useful tool, as seen in others areas of medicine (12). A retrospective study found that subjects with post-2020 lockdown delay of therapy had statistically significant more frequent multiple lesions and extra-thyroid extension as well as lymph nodes metastatic spreading of thyroid cancer when compare to pre-pandemic data (13).

Another aspect is related to the psychological stress of patients who are already known with a thyroid cancer (14). A study from China on 219 patients showed that 31.5% of them had insomnia, 39.7% had anxiety, 33.8% had depression and 20.1% had post-traumatic stress symptoms during peak incidence of infection in general population (14).

COVID-19 INFECTION IN PATIENTS WITH THYROID CANCER

Ongoing debates surround the topic of higher risk of COVID-19 infection in patients with a prior diagnostic of a thyroid malignancy in terms of having a higher risk of infection or a higher risk of developing a more severe form (15). There is not clear answer up to this point, whether a COVID-19 infection actually aggravates the clinical picture of a patient who is known with thyroid malignancy considering anomalies of inflammation, immunity, oxidative stress etc. (16).

On the other hand, specific therapy addressing thyroid cancer like surgery and/or radiiodine therapy should be performed according to local protocol during pandemic restrictions which unfortunately face a great deal of variations (17,18,19).

A specific topic is increased pro-calcitonin during COVID-19 infection (20,21,22). A case report showed a persistent post-infection high pro-calcitonin level with negative inflammatory syndrome which lead to early diagnostic of a medullary thyroid cancer (23).

Concerning the COVID-19 - related mortality in patients with versus without prior diagnostic of thyroid cancer, we mention a nationwide study on Turkish population, conducted between March and May 2020, on 388 adult subjects with thyroid malignancy versus 388 patients without thyroid neoplasia (all of them COVID-19 positive); the results showed similar mortality, regardless prior radioiodine therapy (24).

RECENT NON-COVID-19-RELATED ASSETS CONCERNING THYROID CANCER

The most important data that are released for the last two years concern the understanding of thyroid cancer genetics, the approach of shift from differentiated, follicle cell – derivate carcinoma to anaplastic cancer, as well as evidence regarding new players in the oncological endocrinology like tyrosine kinase inhibitors for advanced forms of thyroid malignancies which are derivate from epithelial cells, thus making 2021 “the year in basic thyroid cancer research”, as named it by Di Cristofano (25).

In Figure 1 we can see the aspect of neck and thorax: voluminous space replacement process especially at the level of the right thyroid lobe, with invasive aspects at anterior and lateral level, and additional large mass effect on the structures of the

FIGURE 1. Chart of interferences between thyroid field and particular aspects surrounding the topic of COVID-19 pandemic, either in terms of patients with prior thyroid conditions going through infection or coronavirus-induced thyroid anomalies in subjects without previous diagnostic of a thyroid condition. BD = Basedow disease, TSH = thyroid stimulating hormone.
midline, with left hyoid bone, thyroid and cricoid cartilage, trachea and esophagus invasion. It develops anteriorly and posteriorly to the thyroid and cricoid cartilages, with tumor spreading to the posterior wall of the trachea; and posteriorly to the bone plane of the adjacent vertebral bodies. Trachea is displaced to the left, with 1 cm - infiltration at the level of the anterior and lateral right walls. The tumor has maximum diameters of 11.12 cm by 9.87 cm by 11.81 cm at the clavicles section level. This is a 76-year-old female admitted for compressive poly-nodular goiter with dysphagia, dysphonia (during the first year of pandemics). Fine needle aspiration cytology showed marked anisocytosis, anisokaryosis, with elongated, fusiform, squamous cells, rare multinucleated cell aggregates, highly suggestive for anaplastic/undifferentiated carcinoma (Bethesda 6).

FIGURE 2. Native computed tomography (CT) aspect of neck and thorax

We already know that a patient under lenvatinib or others tyrosine kinase inhibitors for advanced thyroid cancer is at higher risk of developing pneumonia and other lung complications, including pneumothorax (26-30). A few authors reported that, under these circumstances, patients who become COVID-19 positive are at higher risk of rapidly progression to severe pulmonary complications (31,32,33). The PubMed search using the key words “thyroid cancer” and “acromegaly” showed 22 papers in humans (addressing different levels of statistical evidence). We mention the most clinically relevant data. A nationwide, Swedish study detected among 1296 acromegalic patients, 186 cancers and only 3 of thyroid carcinoma among them (no statistical significance) (43). A retrospective study from Pakistan included 89 acromegalic patients between 2000 and 2020, and a 1.12% ratio of thyroid cancer was detected (44). A first case of pituitary adenoma co-secreting GH (growth hormone) and TSH (thyroid stimulating hormone) that was diagnosed after the removal of a multifocal papillary cancer was published (45). A Turkish study on 96 adults with acromegaly found that 67.5% of them had a thyroid nodule and 4.2% of acromegalic population had thyroid cancer (46). Another study, also from Turkey, found a 7% prevalence of thyroid cancer versus 4% in non-acromegalic population, females being more prone to the condition (47). A single center study from China showed that multifocal type of thyroid malignancy represents the hallmark of a more aggressive profile in patients with papillary thyroid cancer and acromegaly (48). A prospective study showed that differentiated thyroid cancer is not more frequent in subjects with GH secretor pituitary tumors versus patients diagnosed with non-GH producing hypophyseal adenomas (49). Another retrospective, multi-centric study showed that patients confirmed with both acromegaly and differentiated thyroid cancer have an initial low rate of recurrence, with a similar prognostic versus non-acromegalic patients of the thyroid condition (50).

DISCUSSIONS

We choose to discuss a particular trans-disciplinary domain of endocrinology: updated of thyroid cancer on acromegalic patients during 2020 - 2021. We already know that acromegaly patients associate a higher risk of cardiovascular diseases and diabetes mellitus, but also oncologic complications (39,40,41,42). The PubMed search using the key words “thyroid cancer” and “acromegaly” showed 22 papers in humans (addressing different levels of statistical evidence). We mention the most clinically relevant data. A nationwide, Swedish study detected among 1296 acromegalic patients, 186 cancers and only 3 of thyroid carcinoma among them (no statistical significance) (43). A retrospective study from Pakistan included 89 acromegalic patients between 2000 and 2020, and a 1.12% ratio of thyroid cancer was detected (44). A first case of pituitary adenoma co-secreting GH (growth hormone) and TSH (thyroid stimulating hormone) that was diagnosed after the removal of a multifocal papillary cancer was published (45). A Turkish study on 96 adults with acromegaly found that 67.5% of them had a thyroid nodule and 4.2% of acromegalic population had thyroid cancer (46). Another study, also from Turkey, found a 7% prevalence of thyroid cancer versus 4% in non-acromegalic population, females being more prone to the condition (47). A single center study from China showed that multifocal type of thyroid malignancy represents the hallmark of a more aggressive profile in patients with papillary thyroid cancer and acromegaly (48). A prospective study showed that differentiated thyroid cancer is not more frequent in subjects with GH secretor pituitary tumors versus patients diagnosed with non-GH producing hypophyseal adenomas (49). Another retrospective, multi-centric study showed that patients confirmed with both acromegaly and differentiated thyroid cancer have an initial low rate of recurrence, with a similar prognostic versus non-acromegalic patients of the thyroid condition (50).
CONCLUSIONS

For what we know so far, by the end of the second pandemic year, the patients with thyroid cancer are not a fragile population when facing COVID-19 infection itself. However, the delay of adequate therapy amid restrictions is reflected in more severe malignancy behavior, while general concerns about the virus and pandemics increase the level of psychological and social stress. Case finding strategies to detect high risk patients as those on tyrosine kinase inhibitors with potential lung complications are needed.

REFERENCES

