Genetic factors involved in ovarian cancer

Radu Ursu¹,², Radu Alexandru Truica³, Alexandra Cojocaru³, Diana Prepelita³, Lucian Pop¹,³, Viorica Radoi¹,², Nicolae Bacalbasa³,⁴, Irina Balescu⁵

¹”Alessandrescu-Rusescu” National Institute of Mother and Child Care, Bucharest, Romania
²Department of Genetics, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
³Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
⁴Department of Visceral Surgery, Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
⁵Department of Visceral Surgery, Ponderas Academic Hospital, Bucharest, Romania

INTRODUCTION

Ovarian cancer is the most frequent type of gynecologic malignancy and is currently on the fifth place among different cancers worldwide. According to the estimations, ovarian cancer accounts for 1.3% of all new cancer cases. Ovarian cancer is considered a heterogeneous class of malignancies with a poor prognosis due to late diagnosis and low treatment response. There are few types of ovarian cancer: epithelial ovarian cancer, germline cell ovarian cancer and stromal cell ovarian cancer. Epithelial ovarian cancers represent more than 90% of ovarian malignancies, and comprise high-grade serous carcinoma (HGSOC), low-grade serous carcinoma (LGSOC), endometrioid carcinoma, mucinous carcinoma, and clear cell carcinoma. Of these, HGSOC is the most frequent histological subtype. The diagnosis of most of OC cases, at an advanced disease stage is one of the reasons for high fatality rate and carries poor prognosis with current therapies.

Several aspects can increase the risk of developing ovarian cancer, including genetic factors, such as age, postmenopausal hormonal therapy use, infertility and nulliparity. Among the genetic factors, most commonly we encounter BRCA1 and BRCA2, at approximately 17% of patients. Also these mutation rise the risk for another cancers like breast cancer, pancreatic cancer, prostatic cancer and melanoma. BRCA1 and 2 are genes involved in DNA repair and maintenance. Other genes that have a similar function are RAD51C, RAD51D, BRIP1, PALB2, CHEK2, MRE11A, RAD50, ATM and TP53.

Keywords: ovarian cancer, mutations, MMR, BRCA1, BRCA2

ABSTRACT

Ovarian cancer is the most frequent type of gynecologic malignancy and is currently on the fifth place among different cancers worldwide. According to the estimations, ovarian cancer accounts for 1.3% of all new cancer cases. Ovarian cancer is considered a heterogeneous class of malignancies with a poor prognosis due to late diagnose and low treatment response. There are few types of ovarian cancer: epithelial ovarian cancer, germline cell ovarian cancer and stromal cell ovarian cancer. Epithelial ovarian cancers represent more than 90% of ovarian malignancies, and comprise high-grade serous carcinoma (HGSOC), low-grade serous carcinoma (LGSOC), endometrioid carcinoma, mucinous carcinoma, and clear cell carcinoma. Of these, HGSOC is the most frequent histological subtype. The diagnosis of most of OC cases, at an advanced disease stage is one of the reasons for high fatality rate and carries poor prognosis with current therapies.

Several aspects can increase the risk of developing ovarian cancer, including genetic factors, such as age, postmenopausal hormonal therapy use, infertility and nulliparity. Among the genetic factors, most commonly we encounter BRCA1 and BRCA2, at approximately 17% of patients. Also these mutation rise the risk for another cancers like breast cancer, pancreatic cancer, prostatic cancer and melanoma. BRCA1 and 2 are genes involved in DNA repair and maintenance. Other genes that have a similar function are RAD51C, RAD51D, BRIP1, PALB2, CHEK2, MRE11A, RAD50, ATM and TP53.

Keywords: ovarian cancer, mutations, MMR, BRCA1, BRCA2

THE BRCA1 AND BRCA2 GENES

BRCA1 (Breast Cancer Gene 1) and BRCA2 (Breast Cancer Gene 2) are tumor supressant genes that code for proteins with a wide role in DNA repair. There are over 1200 mutation of BRCA1 and over 1300 mutation of BRCA2. Although persons with HGSOC inherit a defect allele gene from one of their parents, the still have a functional allele gene. BRCA1 and 2 are genes involved in DNA repair and maintenance. Other genes that have a similar function are RAD51C, RAD51D, BRIP1, PALB2, CHEK2, MRE11A, RAD50, ATM and TP53.

When the second gene becomes nonfunctional the neoplastic process starts developing trough accumulation of additional mutations. It's estimated that the prevalence of BRCA mutation in general population is about 1/300 to 1/800. Women with BRCA1 or BRCA2 the risk for ovarian cancer is 39-46% and 12-20%. Ovarian cancer has a different histological phe-notip at these patients, mostly serous or endometroid tumors being identified [5].
The BRCA1 gene is situated on chromosome 11q21 and comprises 22 coding exons. The BRCA2 gene is situated on 13q12-13 and comprises 26 coding exons. Evidence shows that ovarian cancer women carrying germline BRCA mutations bear a better prognosis and overall survival when compared to sporadic cases [6]. Tumors with different modifications in either gene are sensitive to specific anticancer drugs that are damaging DNA [7]. Cells with BRCA1 and BRCA2 defects accumulate chromosomal anomalies: severe aneuploidies, centrosome amplification, chromosomal instability, all these can be the pathogenic base of tumor developing.

Mismatch Repair Genes (MMR)

MMR (mismatch repair) genes are involved in a mechanism that corrects alterations that occur during DNA replication and play a vital role in keeping genome stability. There are several genes involved in this system: MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, PMS2. Inactivation of MMR in human cells is associated with genomic instability and predisposition to certain cancers [8]. In the present pathology, MMR deficiency is the most frequent cause of familial ovarian cancer (after BRCA1 and BRCA2 mutations) [9].

MMR dysfunction results from genetic and epigenetic mechanisms, and MSH6 has been described as responsible in most cases. Loss of MMR function and subsequent microsatellite instability is associated with Lynch syndrome. The prevalence of MMR deficiency or microsatellite instability is between 10% and 20% in cases of familial ovarian cancer. Loss of MMR is most common in non-serous ovarian carcinomas, especially endometrial cancer and clear cell carcinoma [10].

Conflict of interest: none declared
Financial support: none declared

References